Skip to content Skip to navigation

Chibueze Amanchukwu

Chibueze Amanchukwu obtained his B.S. from Texas A&M University and Ph.D. from MIT, all in chemical engineering. During his Ph.D. work under the supervision of Paula Hammond, he developed polymeric electrolytes and electrodes, and provided mechanistic insights on polymer stability for lithium-air battery use, a battery with an order of magnitude higher energy density than current lithium-ion batteries.
Materials Design for Novel Silicon and Lithium Metal-Based Batteries

Climate change may be the biggest challenge facing mankind. The rise of atmospheric greenhouse gases such as carbon dioxide (CO2) has contributed to a warming climate, with over 60 percent of the U.S. CO2 emissions stemming from the use of fossil fuels for electricity generation and transportation. Therefore, it is vital to move from generating electricity by burning coal and gas to renewable energy sources such as solar and wind, and from conventional gasoline-powered cars to electric vehicles. For these transitions to be possible, we must have advancements that will make batteries better and more affordable. Increased energy storage will allow renewable energy to be stored and available for use when needed, even if the sun is not shining or the wind is not blowing.  Additionally, improved batteries will provide electric vehicles with longer driving ranges, which will accelerate the transition to cleaner transportation systems. The goal of Chibueze Amanchukwu’s research will be to explore the development of batteries capable of two times the energy storage capacity of current lithium-ion batteries. Amanchukwu will focus on designing new materials for silicon and lithium metal-based batteries, and understanding the material changes that occur during the battery cycling (charging and discharging). The knowledge gained through this research can then guide new materials design, and bring these novel batteries closer to commercialization.